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Why God Might Play Dice 

T h o m a s  D u r t  1 

Received June 11, 1996 

We study the question of the existence of hidden variables within the formalism 
of Pitowsky. We show that probabilities admit factorizable hidden variable models 
iff they admit a Kolmogorovian representation. In particular, directly deduced 
experimental frequencies always admit a factorizable hidden variable model and 
thus a Kolmogorovian representation. We apply this result in the framework of 
Bell's inequalities. We show that a deterministic interpretation of the hidden 
variables associated with this situation refutes the possibility for the experimenter 
of choosing freely the conditions of experimentation, 

1. I N T R O D U C T I O N  

Classical concepts  such as determinism, realism, and causality do not 
easily find a place in the context o f  quantum mechanics.  The intimate belief 
that such concepts  must  somehow describe the fundamental  laws o f  nature 
has motivated the development  o f  numerous hidden variable models.  These 
models try to describe the quantum probabil i ty as the weighted average o f  
deterministic truth-values 2 which reflect a hidden order existing at a subquan- 
turn level (they describe the dice used by God  for deciding what is the result 
o f  a quantum measurement) .  Bell proved in his famous theorem (Bell, 1965) 
that broad classes o f  such models  generate probabilities which must fulfill 
some inequalities. He also showed that in some situations quantum probabili- 
ties violate these inequalities. More recently, Pi towsky (1989) reformulated 
the C l a u s e r - H o m e  inequalities [which are a variant o f  Bell 's  inequalities 
(Clauser and Home ,  1974)] as a necessary and sufficient condition for the 
existence o f  a Kolmogorovian  representation for these probabilities. 

~ Department of Theoretical Physics, Free University of Brussels, Pleinlaan 2, B-1050 Brus- 
sels, Belgium. 

2 According to the convention introduced by Pitowsky (Pitowsky, 1989), we mean by the truth- 
value of an experimental outcome the probability of realization of this outcome. A deterministic 
truth-value is equal to 0 or 1 by definition. 
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We show that the existence of  particular hidden variable models (the 
factorizable ones) for a probability vector is equivalent to the existence of  a 
Kolmogorovian representation for it. We also show a general theorem: we 
can always find a factorizable hidden variable model allowing us to reproduce 
any kind of probability which is a directly experimentally deduced frequency 
(we shall define what this means later). Formulated in the language of Pitow- 
sky, this means that a Kolmogorovian representation always exists for such 
probabilities. In particular, the effective frequencies related to the so-called 
Orsay experiments (Aspect et  al., 1981) that we shall describe later do not 
violate the Clauser-Horne inequalities, 3 although it is well known that the 
quantum frequencies violate them. We show that, in the hidden variable 
model associated with these effective frequencies, the acts and choices of  
the experimenter themselves are a quantity determined by the hidden variables 
(they are fixed by the dice of  God). 

2. T H E  E X I S T E N C E  OF A K O L M O G O R O V I A N  
R E P R E S E N T A T I O N  AND T H E  CLASSICA L 
C O R R E L A T I O N  P O L Y T O P E  

2.1. Some Definitions 

• Let us consider a vector xt in R n(n+~)/2 representing n probabilities 
related to the realization of n dichotomic properties, and the n(n - I)/2 
probabilities related to the conjunctions 4 of these properties: 

"/'l' : ("fl'l, q'r 2 . . . . .  'l'l'n, 'rfl2 , 'IT i . . . . .  '/1"13 . . . . .  "rrij . . . . .  'ITn_l,n) ( 1 )  

• "rr is said to admit a Kolmogorov representation if there exists a measure 
tx on a Boolean algebra .~/and elements a l . . . . .  ai . . . . .  a ,  of  ..~ such that 

xri = Ix(a/); ~ij  = Ix(ai fq aj) (2) 

• For each n-vector c = (el . . . . .  ei . . . . .  e~) E {0, 1 }n, U ~ denotes the 
following vector of Rn<"+w2: (el . . . . .  ¢,- . . . . .  e,, ele2, ere 3 . . . . .  eie  j . . . . .  

en-,en)- The 2 n vectors so defined are called the classical vertices. 
• The surface which consists of  all the convex linear combinations of  

these vertices is called the classical polytope: 

C(n) = I v E Rn(n+l)/2:v = ~ X,u ~ ,he ->0 ,  ~ he---< 1} (3) 
eE {0,1 }n eE {0,1}n 

The following theorem due to Pitowsky (1989) allows us to express the 

3An example  of  this property appeared originally in a preprint  o f  Szabo (1995). 
4Later, we shall define more precisely what  we intend by the conjunction o f  properties.  
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existence of  a Kolmogorovian representation of  the probability ,r as a geomet- 
rical condition in R "~"÷lv2. 

Theorem 1. The vector "rr in R "~"+ iv2 defined above admits a Kolmogoro- 
vian representation iff it belongs to the classical polytope. 

3. THE POSSIBILITY OF HIDDEN VARIABLES 

Let us consider a system consisting of an urn containing different balls 
of diverse colors and masses. We could carry out an experiment by taking 
one ball "at random" among the balls of  the urn and observing the color and 
mass of  this ball (this is a variant of  the dice). The frequency of occurrence 
of balls of  one particular color (mass) would be, when the balls are homoge- 
neously mixed, 5 the ratio of the amount of  balls sharing this color (mass) to 
the total amount of  balls. The frequency of occurrence of  balls of  one particular 
color and one particular mass would be, when numerous experiments are 
carried out, very close to the ratio of the amount of balls sharing this color 
and this mass to the total amount of balls. We shall consider this experiment 
as a typical example where "hidden variables" appear. We intend thereby 
that, although each individual experiment is deterministic (unambiguous), our 
lack of  knowledge (or eventually of  control) of  the experimental conditions (or 
of  the prepared state of the system, here of  the urn) leads to a probabilistic 
behavior. This justifies the following definition: 

Definition. A probability vector xr admits a hidden variable model iff: 

- We can find a set of  variables such that each variable determines 
univoquely each result of the n(n + 1)/2 properties associated to the 
n(n + 1)/2 probabilities contained in the vector xt; this means that 
to each variable we can associate a truth-function on the set of  
properties, equal to 1 when a property is realized, 0 otherwise, so to 
say an element of  {0, 1 }n~n+l)/2. 

° The frequency of  occurrence of  these hidden variables is given by 
a measure P on the set of hidden variables. 

• The frequency of  realization of the n(n + 1)/2 properties obtained 
by averaging with the weight P their truth-functions on the set of  
hidden variables is equal to the vector o .  

needed, as is shown by the following This definition is more than 
theorem. 

51t seems through this example that a hidden variable model contains necessary stochasticity 
as an essential tool, but this stochasticity itself could be the consequence of some complicated 
but deterministic dynamics. Such dynamics are, for instance, used in computers, in programs 
aimed at generating random numbers. 
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Theorem 2. Each probability vector admits a hidden variable model. 

Proof We can without loss of generality redefine the order of the n(n 
+ 1)/2 probabilities contained in the vector rt so that they are increasing in 
function of the index i { i ~ [ 1, n(n + 1)/2] }. If we choose as hidden variables 
the n(n + 1)/2 variables vi {i ~ [1 . . . . .  n(n + 1)/2]} of which the truth- 
value is zero for all the experiments associated to an index strictly smaller 
than i and one otherwise, and that the frequency of occurrence Pi of the 
variable vi is the difference between the ith component of the reordered 
vector ~ and the foregoing component (we suppose for convenience that the 
frequency of occurrence of the first component of the reordered vector equals 
this component), we fulfill the conditions under which ax admits a hidden 
variable model. 

It is clear that the model that we introduced in the proof contains more 
information than the n(n + 1)/2 probabilities of the vector or. It implies, for 
instance, that if we could observe simultaneously the realization of two of 
the n(n + 1)/2 properties associated to the probabilities, the realization of 
the property which has the smallest probability would always imply the 
realization of the other property. Such correlations may not be realized experi- 
mentally. This hidden variable model is then not adequate. Furthermore, the 
choice of notation ~rii made by Pitowsky reflects implicitly that this probability 
corresponds to the simultaneous realization of the property related to the 
probability 11 i and of the one related to 7rj, and the hidden variable model 
presented above ignores the correlation implied by this implicit convention. 
This justifies the following definition: 

Definition. A probability vector ~ admits a factorizable hidden variable 
model iff: 

It admits a hidden variable model. 
The truth-function associated to each hidden variable is factorizable: 
the truth-value of the result described by the index ij is the product 
of the truth-value of the ith result with the truth-value of thej th  result. 

This last condition expresses that, if the hidden variable model is physi- 
cally relevant, whenever we observe the ith result and thej th  result simultane- 
ously, then we observe the result associated to the index ij. Implicitly, this 
means that these two observations are compatible (we can carry them out 
simultaneously), and that what we called initially the conjunction of the 
events i and j is effectively the simultaneous realization of these events. 
This condition restricts the set of admissible probabilities, as shown by the 
following theorem: 
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Theorem 3. A vector ~ in R n(~+ ~2 admits a factorizable hidden variable 
model iff it belongs to the classical polytope. 

Proof. (A) Since the truth-function associated to a hidden variable is 
factorizable, it can be written as a classical vertex of  R n<~+~a of  the kind u ~, 

~ {0, 1 }n, as was defined in the first section. According to the definition 
of a hidden variable model, a-t = E ~  10.1 f u ' '  P(¢), where P(¢) is the measure 
of the set of  hidden variables admitting u ~ as truth-function. These sets are 
disjoint for distinct truth-functions, and they cover the set of  hidden variables, 
because each hidden variable determines a factorizable truth-function. Taking 
into account that P is a measure, we have thus that the vector xr is a convex 
linear combination of  the classical vertices. 

(B) If the vector ~ is a convex linear combination of  the classical 
vertices, we can define the following hidden variable model: 

• Each element ¢ of  {0, 1 }~ is a hidden variable, and its truth-function 
is u L  

• The measure P(¢) is equal to the weight M of u ~ in the convex linear 
combination when ~ is not 0 ~. 

• Then, its weight is equal to 1 - the sum of  the weights of  the other 
hidden variables. 

It is easy to check that P is a measure, and that this model is a factorizable 
hidden variable model of  xr, which finishes the proof. 

4. T H E  P R O B A B I L I T I E S  AS E X P E R I M E N T A L  F R E Q U E N C I E S  

The probabilities which appear in physical theories can in general be 
measured experimentally as frequencies of  occurrence of events. This is the 
case, for instance, in scattering experiments, where counters record the number 
of realizations of  some given event and deduce its probability by dividing 
this number by' the total number of  events. The probability vector 

( q T l ,  'r l '2,  . . . , 'IT i . . . .  , Tl 'n,  qT l2 ,  '/1"13 , . . . .  "lTij . . . . .  "]Tn-l.n) 

is then equal to 

( N I ,  N 2  . . . . .  N i  . . . . .  N I 2 ,  NI3 . . . . .  Ni: . . . . .  Nn-l,n)'(1/Nr) 

where Nx represents the number of  events accompanied by the realization of 
the dichotomic property x during the period T of  an experimental run, Nr 
being the total number of events occurring during this experimental run. 

This justifies the following definition: 

Definition. If we can simultaneously observe the realization (nonrealiza- 
tion) of  the n properties symbolized by the index i, and we associate the 
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index ij to the simultaneous realization of the properties i and j,  we shall say 
that the vector ~r is directly experimentally deduced. 

In this case, we can show the following theorem: 

Theorem 4. If the vector ,rr is directly experimentally deduced, it admits 
a factorizable hidden variable model. 

Proof Let us define the following hidden variable model: 

• Each experimental result associated to an event of the run can be 
expressed as an element e of {0, 1 }~, where ~i is the result of the ith 
property (1 when it is realized, 0 otherwise) and we shall consider 
it as a hidden variable (its truth-function is u'). 

• The measure P(e) of each hidden variable is equal to NJNr, where 
N~ is the number of events realizing the ith property whenever ~i is 
one, and not realizing it otherwise. 

It is easy to check that P is a measure, and that this model is a factorizable 
hidden variable model of ~,  which finishes the proof. 

5. HIDDEN VARIABLE MODELS AND DETERMINISM 

It is important to note that the possibility of a Kolmogorovian representa- 
tion and thus of a factorizable hidden variable model does not per se imply 
the possibility of a deterministic mechanism explaining the observations. 
Nevertheless this identification is true in nearly all cases: a Kolmogorovian 
probability can "nearly always" (we intend by this to except extremely patho- 
logical cases) be deduced from a deterministic model. The dynamics of 
complex systems such as, for instance, the baker's transformation allows one 
to generate a homogeneous probability distribution over the interval [0, 1] 
(this is in connection with footnote 4). After a mapping of this interval, we 
can then generate arbitrary distributions on a finite set of events, or on 
sufficiently regular continuous intervals. Combining this with the fact that, 
practically, nearly all experiments possess a finite number of possible results 
or at worse regular continuous intervals of them and that all the frequencies 
which are directly experimentally deduced admit a factorizable hidden vari- 
able model, there exists always a deterministic model explaining all the facts 
that we could observe. 

Kant already noted, in a more philosophical context, that the answers 
to some questions are just a matter of belief. The question of whether the 
universe is a machine is of the same nature. No experiment could refute this 
assertion. Furthermore, different interpretations are possible concerning the 
origin of the existence of probabilities. They could be related to a complex 
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dynamical system 6 possessing iteration properties similar to the baker's trans- 
formation, or they could be a priori  probabilities. The appearance of both 
kinds of probability could occur at the level of the system itself, or during 
the process of measurement. In the first case, we could speak of a lack 
of control of the system; in the second case, we could speak of a lack 
of knowledge. 

6. SUMMARY 

In order to be more synthetic, we give here a summary of the forego- 
ing theorems: 

The probability vector ~ belongs to the classical correlation polytope. 

It admits a Kolmogorovian representation. 

It admits a factorizable hidden variable model. 

It is directly experimentally deduced. 

All probability vectors admit a hidden variable model, not necessarily 
factorizable. 

7. C L A U S E R - H O R N E  INEQUALITIES AND THE CLASSICAL 
POLYTOPE 

7.1. Clauser-Horne  Inequalities 

The experiments realized to test Bell's inequalities (Bell, 1965) proceed 
as follows. A source emits two photons quasisimultaneously. Two polarizers 
are placed in two spatially separated regions (left and right) symmetrically 
on both sides of the source. They allow one to measure a dichotomic variable, 
the sign of the linear polarization of the incoming photons along a direction 
belonging to the plane perpendicular to its direction of propagation. At each 
side, we choose at our convenience a direction for the measurement of 
polarization between two different directions: the directions A and A' in the 
left region, B and B' in the right region. We associate to the property "the 
photon has + polarization" the value 1, 0 otherwise. The conjunction of 
these experiments is then expressed by the product of the values of each 
experiment. The technical details are not important here, but it is worth noting 

6Thanks to S. Diner for clarifying discussions about this subject. 
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that for some good chosen directions of  the polarizers 7 we obtain by orthodox 
quantum mechanical computations that the probabilities (P(A), P(A'), P(B), 
P(B'), P(A N B), P(A n B'), P(A' N B), P(A' n B'))  yield 

where X, (X n Y) represent the property "the photon has + polarization 
along the X direction, (along the X and Y directions simultaneously)." These 
probabilities were observed as experimental frequencies with a very good 
precision in numerous experiments, 8 among others in the Orsay experiments 
(Aspect et al., 1981). 

It is worth remarking that the probabilities P(A' N A) and P(B n B') 
are not taken into account, because the choice of  a direction for a polarizer 
excludes the other direction, so that we cannot simultaneously measure A 
and A' (B and B').  Note that this implies that the frequencies deduced from 
the experiments are not directly experimentally deduced in the sense of  our 
previous definition. 

I f  there exists a hidden variable model which is factorizable only for 
the four conjunctions considered, the same proof as in the general case 
(with six conjunctions) is still valid and implies that the eight-dimensional 
probability vector deduced from the experiment is a convex combination of  
the 16 (24 ) classical vertices which are obtained by suppressing the pair of  
nonphysical components of  the ten [n(n + 1)/2, n = 4]-dimensional vertices 
already defined. Pitowsky (1989) showed that we can rewrite this condition 
in the form of inequalities: 

Theorem 5. The probability vector (P(A), P(A'), P(B), P(B') ,  P(A n B), 
P(A O B'), P(A' n B), P(A' N B'))  [it is equal to (1/2, 1/2, 1/2, 1/2, (1 - 
v/2/2)/4, (1 - x/2/2)/4, (1 + v/2/2)/4, (1 - v/2/2)/4) in our case] is a convex 
combination of the reduced classical vertices (e~, ez, ~-3, IE4, P--lIE3, IE1E4, P--2~-3, 
e2e4) (where ei e {0, 1 } Vi) iff the following inequalities are fulfilled: 

- l  <- P(A n B) + P(A O B') + P(A' n B') - P(A' n B) - P(A) - P(B')  <-- 0 (4) 

- 1  <-- P(A' n B) + P(A' O B') + P(A n B') - P(A N B) - P(A')  - P(B')  <-- 0 (5) 

7The source emits a pair of photons forming an entangled state describable by the singlet state, 
the directions A, A', B, B' are coplanar and are all separated by angles of 22.5 deg, in the 
order A', B', A, B. 

8Provided we make some quite natural assumptions about the quality and the functioning of 
the polarizers. Some physicists [see Home and Selleri (1991) for a review of the polemics] 
still contest the experiments, considering that the quality of the photon detectors is too low 
to deduce valid results. We postulate here that we can trust the experimenters and the assump- 
tions that they made about the behavior of the detectors. 
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- 1  <- P(A 71 B') + P(A 71 B) + P(A' f)  B) - P(A' 71 B') - P(A)  - P(B) <-- 0 

- 1  <- P(A' f) B') + P(A' fq B) + P(A n B) - P(A 71 B')  - P(A' )  - P(B) < 0 

where 

(6) 

(7) 

0 <- P(X, Y) -< P(X) -< 1 (8) 

0 <- P(X, Y) <- P(Y) -< t (9) 

P(X) + P(Y) - P(X fq Y)-< 1 (10) 

X ~ ( A , A ' } ,  Y ~ { B , B ' }  ( l l )  

The first four inequalities are known as the Clauser-Horne (Clauser and 
Home, 1971) inequalities. It is easy to show the necessary condition, because 
every reduced classical vertex fulfills the inequalities and these inequalities 
are linear. The sufficient condition is less straightforward, and we invite the 
interested reader to consult the book of Pitowsky. 

If we replace the experimentally measured frequencies in the first 
inequality, we violate it: 

1 -  ,,/~/2+ 1 -  4 ~ / 2 +  1 -  ,/2/2 1 + ,v/212 1 1 = 1 ' ~  < - 1  
4 4 4 4 2 2 2 2 

This means that the probability vector associated to the measures of  correlation 
in this experiment does not admit a Kolmogorovian representation. 

7.2. Effective Probabilities Do Not Violate the Inequalities 

We showed that a probability vector which is directly experimentally 
deduced admits a factorizable hidden variable model in Theorem 4, and that 
the violation of  Clauser-Horne inequalities implies the nonexistence of  such 
a model in Theorem 5. The violation of these inequalities by experimental 
frequencies seems paradoxical unless we notice that the frequencies (1/2, 
1/2, 1/2, 1/2, (1 - x/2/2)/4, (1 - x/~/2)/4, (1 + x/~/2)/4, (1 - ,¢/2/2)/4) are 
not really observed. Reformulated according to our definitions, this means 
that this probability vector is not directly experimentally deduced. How could 
this be so? The answer is the following. We noticed already that it is impossible 
to perform simultaneously A and A' (B and B'). In fact the projectors associated 
to these quantum measurements do not commute. This means that we deduced 
the frequencies from four different experiments, (A f3 B), (A fq B'), (A' fq 
B), (A' A B'), and not directly from one experiment. We could reformulate 
these four experiments as constituting one big experiment. For instance, in 
Orsay experiments (Aspect et aL, 1981), the directions of  the polarizers were 
themselves monitored by an electronic device possessing stochastic elements, 
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so that the probability of measuring the polarization along the A(A') direction 
is 1/2 (the same is true for B and B'). The effective frequency vector is then 

( 1 1 1 1 1 1 1 1  1 - : / 2 1  1 - : / 2 . 1  1 + : / 2  
, - 

.14, I -  v/2/2"~)4 

which does not violate the Clauser-Horne inequalities9: 

I - , f 2 / 2 1  + 1 - , 4 ~ / 2 . 1 +  1 - , , f 2 / 2 1 _  1 + v/ '2/21 _ l . l _ l . 1  
4 4 4 4 4 4 4 4 2 2  2 2  

_ 3 , / 2 >  - 1  
8 8 

The nonviolation of the inequalities in the particular case considered here 
can be understood as a consequence of the general Theorems 1, 4, and 
5, because the effective frequencies correspond to directly experimentally 
deduced frequencies. 

Similar results hold in numerous situations. For instance, if the probabil- 
ity of measuring the polarization along the A(A') direction is not 1/2, or if 
the directions of the polarizers are changed, the effective frequencies that we 
obtain still fulfill the inequalities. We developed in Durt (1995) a rather 
technical proof adapted to this situation, making use of the classical polytope 
associated to the Orsay experiment. We give in Durt (1996a, b) more general 
proofs, which allow us to determine explicitly the Kolmogorovian representa- 
tion of vectors obtained as weighted averages of one-run quantum frequencies. 

In the case of the Orsay experiments, the four Kolmogorovian representa- 
tions of the probabilities characterizing the measurements of polarization 
along the directions (A, B), (A, B'), (A', B), and (A', B') are given in Table 
I) ° We adopted the following convention: the symbol A ('A), for instance, 
is associated with the measurement of a positive (negative) polarization when 
the left polarizer is oriented along the direction A. 

If we consider the effective frequencies associated with the whole experi- 
ment, their Kolmogorovian representation is shown in Table II. 

7.3. A Hidden Variable Model for the Effective Frequencies 

The Kolmogorovian representation given in Table II and Theorem 3 
allow us to build a hidden variable model for the effective probabilities. The 

9This was already noticed by Szabo (1995). We present it here as a special case of the general 
theorems previously demonstrated. 

1°For the deduction of Tables I and II, see Durt (1996b). 
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Table I. The Kolmogorovian Representations Associated with the Four One-Run 
Experiments Entering the Orsay Experiment 

a n b  a n b '  

A n B A n -B A n B' A n ~B' 
1 - v ~ / 2  1 + , ~ / 2  1 - , ~ / 2  1 + ,d~/2 

4 4 4 4 
~A n B ~A O =B ~A n B' ~A n ~B' 

1 + ~f212 1 - V /2 /2  1 + v / 2 / 2  I - , y ~ / 2  
4 4 4 4 

a' O b a' O b' 

A' n B A' O -~B A' n B' A' n ~B' 
I + , ~ / 2  I - v / 2 / 2  1 - , / ~ / 2  I + , , / ~ 2  

4 4 4 4 
~A' n B ~A' n ~B ~A' n B' ~A' n ~B' 
1 - v /2 /2  I + , , / ~ 2  1 + , , / ~ 2  I - V/2/2  

4 4 4 4 

Table II. The Kolmogorovian Representation Associated with the Whole Orsay 
Experiment 

A NB A O -~B A O B' A N-~B' 
1 - l + 1 - 1 + # 2  

16 16 16 16 
~A n B ~A N --aB -~A n B' -~A n ~B' 

1 + , / 2 / 2  1 - v / ~ 2  1 + , / ~ 2  1 - V / ~ 2  
16 16 16 16 

A' n B A' n ~B A' n B' A' n -~B 
1 + , , /2 /2  1 - v / ~ 2  I - , , / ~ 2  I + , , / ~ 2  

16 16 16 16 
"-'A' n B ~A' n --,B -~A' n B' ~A' n -~B' 
1 - -  , / 2 / 2  1 + V / ~ 2  I + V / ~ 2  1 - 

16 16 16 16 

specification o f  a hidden variable must  determine univocally the result o f  an 
experiment. What  are these results in our case? There  are four possible 
experiments: (A O B), ( A n  B') ,  (A' n B), (A' n B') ,  each of  them having 
four possible results: (up, up), (down, down),  (down, up), (up, down). 

The classical vertex o f  the hidden variable predicting the result (up, up) 
for the first exper iment  is, for instance, (1, 0, I, 0, 1, 0, 0, 0), and 

/ / t  1 1 1 1 1 1 1 1 - v / 2 / 2  1 1 - v / 2 / 2  1 1 + x / 2 / 2  

"2' 2"2' 2"2' 2"2' 4 4'  4 4 '  4 

.14, 1 - v/-2/2 " 1 ) 4  
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is a convex combination of such vertices. Every hidden variable determines 
such a vertex, and determines thus the direction of polarization chosen during 
the stochastic process monitoring this direction. We could imagine that this 
process makes use of electronics, or even of a freely thinking physicist 
choosing at random the directions of the polarizers. Then our hidden variable 
would predetermine I~ the result obtained by the freely thinking physicist 
choosing at random. Such a global determinism is in fact a logically coherent 
explanation of all the apparently hazardous events occurring in the world 
and the belief in such a determinism is an old psychological attitude commonly 
called "fatalism." We have shown in fact nothing else than trivial evidence: 
it is impossible to demonstrate by experiments whether all the events that 
we observe were already "written in a book" or not unless we know the book 
in advance. This remark is in some way contradictory with some claims 
made in the literature about the possibility of a Kolmogorovian representation 
for quantum probabilities, which we discuss in more detail in the next section. 

8. THE POSSIBILITY OF A K O L M O G O R O V I A N  
REPRESENTATION FOR QUANTUM PROBABILITIES  

Pitowsky showed (Pitowsky, 1989) that, in a Bell-like situation, the 
Clauser-Horne inequalities are a necessary and sufficient condition for the 
existence of a Kolmogorovian representation of  the probabilities. According 
to some authors (Accardi, 1984; Gudder, 1984; Pitowsky, 1982; see Szabo, 
1994, for review), the experimental violation of Bell's inequalities could 
mean that the axioms of probability defined by Kolmogorov are not fulfilled 
in nature. This is a "negative explanation" of nature in the same way that 
the Michelson-Morley experiment could be interpreted as the proof of the 
nonexistence of  the ether. 

The example given by L. Szabo showed that, provided we consider the 
effective probabilities, the Bell inequalities are no longer violated. This allows 
us to build a Kolmogorovian representation of the observed frequencies, in 
apparent contradiction with the negative conclusion presented above. The 
essential novelty introduced by Szabo is to consider effective frequencies 
and not one-run quantum frequencies [note that a prototype of this idea 
appeared already in Aerts (1987)]. 

It is worth noticing that the approach emphasized in our paper, centered 
on the concept of experimentally deduced frequency, not only generalizes 

i~We interpret here the existence of a Kolmogorovian representation (and thus of a hidden 
variable model) of the probabilities in the sense of the existence of a deterministic machinery 
simulating the observed frequencies. This is a subjective interpretation of the mathematical 
results so far obtained, motivated by the general interest of such questions as free will and 
determinism. This remark is to be connected with Section 5. 
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the example of Szabo, it constitutes in fact a return to the foundations of 
the theory of probabilities. The original formulation of probabilities was 
effectively based on individual equiprobable events. It was much later that 
Kolmogorov introduced his abstract definition of probabilities (as measures 
on a-algebras). It is only recently that, following such authors as Accardi 
and Pitowsky, it was suggested that the axioms of Kolmogorov are not 
fulfilled in nature. When we demonstrated that experimentally deduced fre- 
quencies admit a Kolmogorovian representation, we used the original formula- 
tion of probabilities in terms of equiprobable events. Our approach privileges 
in fact good sense rather than mathematical refinements. Nevertheless, the 
interpretation of our results is disturbing: it is usually considered as scientific 
dogma that the conditions of experiment are freely chosen by the experimenter. 
It is interesting to remark that the formalism developed by Pitowsky allows 
one to discuss the question of determinism via rigorous mathematical argu- 
ments, as did the formalism of Bell for the question of locality, tz 

APPENDIX. (NON)FACTORIZABILITY AND (NON)LOCALITY 

Some authors claim that Bell's inequalities have nothing to do with the 
problem of nonlocality [see Szabo (1994) for a complete discussion], but are 
only related to the possibility of a Kolmogorovian representation for the 
quantum probabilities. We analyze in Durt (1995a, b) the role of the implicit 
assumption of factorizability hidden in the definition of a Kolmogorovian 
representation. We show there that locality (or, more generally, separability), 
as conceived in the original formulation of Bell's theorem, is still present in 
the formulation of the problem in terms of axiomatic probability. Effectively, 
a local hidden variable model (in fact a model describing separated entities 
in the left and right regions) is necessarily factorizable. To show this, let us 
assume that the pair of photons is in a given hidden state and that no 
connection at all ~exists between the left and right regions. 13 The results of 
the measurements in the left and the right regions are thus predetermined 
and independent of the direction of detection of polarization at the other side. 

12We show in Durt (1995a, b) that the hidden variable model of Bohm (1952), when applied 
to a Bell-like situation, is not local and not factorizable, in accordance with the results of 
the Appendix, where we show that locality implies factorizability. This allows one to develop 
an interpretation where the experimenter is free to decide which experiments to perform, but 
where the left and right polarizers are nonlocally connected, and exchange information in 
such a way that the results of the polarizers are no longer factorizable. 

13An essential characteristic of the Orsay experiments is that the choices of the directions of 
the polarizers were realized by two stochastic devices, supposed to be independent, so quickly 
that the particles could not receive or exchange information about the direction of polarization 
realized at the opposite wing of the device, unless this information propagates faster than 
light. The combination of nonseparability and impossibility of exchanging information without 
breaking Einsteinian causality was called nonlocality. 
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This means that the value of the property A A B is equal to the product of 
the values of the properties A and B considered separately. This is nothing 
else than factorizability. Note that this reasoning was already present in the 
original formulation of Bell's theorem. 
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